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ABSTRACT

The shortest path problem exists as a major component of many

network and network-related problens. For problems having a single

objective, algorithm development over the past twenty-five years has

made the solution of this problem a relatively simple exercise. For

multiobjective problems, adaptation of shortest path methodologies

to generate noninferior solutions becomes a complex and difficult

task. This thesis introduces an algorithm, based upon standard

label-correcting algorithm techniques, which identifies all non-

inferior paths from one node in a network to all other nodes in the

network in a single computer run. The algorithm, titled the Non-

inferior Path Labeling Algorithm (NPLA), is shown to be at least

four to ten times faster than shortest path algorithms applied

multiobjectively for a problem with two objectives. NPLA is

Judged to be unique in its capability to identify all solutions which

lie in duality gaps of the noninferior solution set. NPLA has been

found to be easily programmed, efficient, and capable of being used

* with all network designs. It is readily adaptable to problems of

more than two objectives.. -
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CHAPTER I

PATH DETERMINATION AND MULTIOBJECTIVE ANALYSIS

A. INTRODUCTION

This thesis presents the results of research directed toward

identification and implementation of a multiobjective methodology

for the determination of paths through a network. The path-

determination, or routing, problem lies at the heart of many public

and private system planning issues. Mail delivery, refuse collec-

tion, and police patrol design are everyday examples in which the

routing problem is a central focus. The use of an existing

transportation system and the design of additions to a transportation

system require the application of path-determination methodologies

by both public authorities and private enterprise planners. Pipeline

systems, water supply systems, communication systems, electronic

systems design, aircraft routing, and the routing of shipments of

toxic substances are other examples where the routing problem is an

important issue. In addition to the areas where routing is a central

focus, path-determination is an essential component of many methodo-

logies designed to locate facilities in a network. These include

the p-Median Problem, Warehouse Location Problem, the Transportation

Problem, and Network Flow Problems.

Within the area of path-determination, the problem of finding

S
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the shortest path between nodes within a network is often of prime

importance. Although it is difficult to underestimate the importance

of the route-determination problem itself, the degree of algorithm

development over the past twenty-five years has made the solution

of the Shortest Path Problem a relatively straightfonard and simple

process. Such cannot be said, however, when the path-determination

problem involves multiple objectives. Instead of finding a single,

shortest path out of many alternative paths between two nodes, the

multiobjective path-determination problem requires the determination

of one or more noninferior paths between any two nodes in a network.

In such cases, the "shortest" path will be one of the noninferior

paths, but, very often, it will not be an unambiguously superior

path.

Multiple objectives are a common element of many problems

facing planners in all elements of public and private operations.

Planners are increasingly turning to multiobjective analytic

methodologies for their solutions. The application of multiobjective

analysis to the path-determination problem has been rare, but the

r requirement for such analysis is appearing and its importance

increasing.

...
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B. MULTIOBJECTIVE ROUTING PROBLEM FORMULATION

This thesis presents the results of research directed toward

the identification and implementation of a multiobjective methodology

for the path-determlination problem. This problem arose as a

result of a research project in the Department of Geography and

Environmental Engineering of The Johns Hopkins University, funded

by the U.S. Department of Energy (DOE). The purpose of the DOE

project was to develop a prescriptive model for the location of

Away-From-Reactor (AFR) spent nuclear fuel storage facilities. A

network approach was chosen for the modeling effort. Four tasks

were required to be undertaken as follows:

1) Define the network.

2) Determine which AFR sites should be

open to accept spent fuel.

3) Determine which reactors will ship their

spent fuel to which of the open AFR's.

4) Determine the appropriate routes over which

spent fuel will be shipped between any given

reactor and AFR.

Network definition consisted of selecting nodes to represent

potential AFR sites and existing reactor sites, selecting the system

of arcs and nodes representing the transportation system to be used,

and determining and assigning traversal costs to each arc. Solution

t
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of the AFR opening and reactor assignment problems was approached

through the application of a p-Median methodology. [D. Shobrys,

Unpublished Memorandum, Johns Hopkins University, 1980 and DOE/SR

Interim Report, Johns Hopkins University, 1980.] The approach to

the routing problem was not immediately decided upon and was the

subject of careful research.

Care in the selection of a route-determination methodology was

important for two principal reasons. First, the p-Median methodology

requires the predetermination of routes between all AFR-reactor

pairs. Traversal costs for these routes form the cost vector of

the p-Median problem formulation. Its solution, AFR openings and

reactor assignments, is a reflection of, and therefore dependent

upon, the routes which have been determined. The second reason is

the attention paid by DOE and the public to the issue of nuclear

waste shipments. Since proximity to the nuclear wastes appears to

be a principal concern, the choice of routes and how they are chosen

must be subjects of close examination. This last consideration

motivated the use of a multiobjective approach to the problem.

There are efficient and relatively simple methodologies avail-

able for solving the path-determination problem with respect to a

single objective, which is typically cost, distance, or time minimiza-

tion. However, the DOE project was to look at two objectives,

distance minimization and minimization of population within a

I,
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specified zone along the routes. The first objective is a surrogate

for cost while the second provides a measure of the perceived

undesirability of shipping spent fuel over the route [D. Shobrys,

Unpublished Memorandum, The Johns Hopkins University, 1980, and

DOE/SR Interim Report, The Johns Hopkins University, 1980].

Although there are many problems for which multiple objectives

can be identified, this problem in particular is an example in which

a single objective would incompletely describe the problem and most

likely be unacceptable in a political decision-making arena. The

two objectives chosen here represent diverse opinions of what is

important about nuclear waste shipping routes and AFR location.

The routing problem was now required to be formulated so as to

permit the generation of the noninferior set of paths between each

potential AFR site and reactor in the network. Relatively few

techniques have been developed for generating noninferior sets

[Cohon, 97]. With the exception of the multiobjective simplex

method, generating methods obtain solutions iteratively from a

transformed, single-objective version of the problem. In this manner,

the multiobjective path-determination problem can be reduced to a

single-objective problem by creating weighted combinations of the

objectives. Run many times using an appropriate single-objective

methodology and a different weight for each run, many different

solutions may be found. Those solutions which are noninferior can

S(.
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be plotted in objective space to form a representation, to a greater

or lesser degree, of the complete set of noninferior solutions.

During the initial stages of the DOE project, the multiobjective

routing problem was approached in this way. However, as a result

of investigation, an algorithm was developed by the author and

project analyst Roger Cox which is capable of generating the complete

set of noninferior paths between any two points of a network in a

single run. The algorithm, titled the Noninferior Path Labeling

Algorithm (NPLA), has served to reduce much of the difficulty

associated with the mul tiobjecti ve path-determination problem.

C. THESIS ORGANIZATION

This chapter has established the routing problem, discussed

its difficulties when approached multiobjecti vely, and briefly

introduced an approach to facilitate its solution. The remaining

chapters serve to more thoroughly examine single- and multiobjective

,$ path determination methodologies and explain the NPLA.

Chapter II discusses the history and present status of shortest

path algorithms. Also discussed are existing algorithmic approaches

to multiobjective path determination, the K-Shortest Path approach

in particular.

Chapter III formally presents NPLA. It examines its relationship

to single-objective shortest path algorithms, states the algorithmic

*AAA_
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form, and illustrates its workings and capabilities by examle.

Chapter IV examines the relative efficiencies and capabilities

of NPLA with respect to other multiobjective approaches. The results

are based on data obtained from the DOE project.

Chapter V offers conclusions about the present status of NPLA

and directions for future research.
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CHAPTER II

THE SHORTEST PATH PROBLEM AND MULTIOBJECTIVE APPLICATIONS

A. INTRODUCTION

The most basic, and one of the most common, of the path-determina-

tion problems is the shortest path problem. In its most general

form the problem may be stated as: find the shortest path between

specified pairs of nodes in a network. In modified form, the problem

statement may be amended to: find the noninferior path(s) between

specified pairs of nodes. This is the essence of multiobjective

path-determination. It will be shown in Chapter III that NPLA has

many structural and operational similarities to some shortest path

algorithms. This chapter is designed to place NPLA in the context

of the development and structure of shortest path algorithms. It

is further examined with respect to other multiobjective approaches

based on shortest path algorithms.

The organization of this chapter reflects an ability to place

shortest path algorithms in various categories. One can identify

two principle methodological approaches applicable to the problem of

determining shortest paths: those based on linear programming and

those based on the fields of graph theory and combtinatorics. Section

B is devoted to the linear programing based algorithms. These

algorithms play a relatively small part in practical problems of

-.. ... .... ________________-l~i 1
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shortest path determination. With the exception of their role

in multiobjective analysis, discussion of these algorithms is limited

to this section.

Section C begins the discussion of shortest path algorithms

based on graph theory and combinatorics. It is devoted to the

history of their development and a review of the pertinent literature,

with a goal of placing this area in chronological perspective.

Section D continues the discussion about algorithms based on

graph theory and combtinatorics. In this section, the shortest path

problem statement has been restated to show two distinct subproblems:

1) find shortest paths from all nodes to all other nodes (all-to-all)

and 2) find shortest paths from one node to another node (one-to-one).

Consistent with these two categories there exist two categories of

algorithms to achieve these goals. Section D discusses matrix

algorithms to solve the"all-to-all"problem and introduces the class

of labeling algorithms which solve the one-to-one problem.

Section E is devoted to a detailed discussion of labeling

algorithms, the most generally efficient and commonly used set of

shortest path algorithms. Labeling algorithms can also be categorized

in two ways: as label-correcting and label-setting algorithms.

This section established the notation and concepts of graph theory

necessary for the understanding and operation of labeling algorithms,

and presents both classes of labeling algorithms.

f
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Section F concludes the chapter with a discussion of approaches

to multiobjective path-determination. Existing examples have been

drawn from the literature. Included is an illustration of how a

multiobjective noninferior set generation technique can be applied

with shortest path algorithms.

B. NETWORK FLOWS AND SHORTEST PATHS

The first expression of a network flow problem was the Transpor-

tation Problem. Here an inventory must be moved from a specified

number of sources to a specified number of sinks. The path from

each source to each sink is presented as though it were a single

link. Consistent with the origin of the Transportation Problem,

paths and costs are often associated with existing transportation

routes and rates as expressed by commercial water, road, rail and

air freight charts. Algorithmic approaches to the transportation

problem were supplemented by the linear programming technique by

Dantzig in 1951, [see Bazaraa and Jarvis, 68] beginning an associa-

tion of network flow and linear programing theories.

Recognizing the essentially heuristic nature of determining

links and costs in the Transportation Problem, the Transshipment

Problem was formulated by Alex Orden in 1956 [4]. Orden's formulation

permitted the existence of a network consisting of intermediate nodes

and arcs as well as source and sink nodes. He was able to restructure

(
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this network into the Transportation Problem format. In this way,

the problem of routing was formally addressed, along with the problem

of assigning shipping from sources to demand points. The problem

could still be solved by the existing Transportation Problem solution

techniques. Orden went one step further, however, by recognizing

that the routing capability of the Transshipment Problem formulation

could address the shortest path problem. He proposed that his

formulation be used to obtain the link cost data for direct use in

large transportation problems.

In the years after Orden's work, much was accomplished in network

flow theory. Included in this development was the definition of the

class of problems called Minimum Cost Network Flows and development

of versatile and efficient solution algorithms. Again the concen-

tration is on routing an inventory through a network, but additional

constraints are placed on the network in the form of upper and lower

bounds on link capacities, and the structural restrictions of the

Transportation/Transshipment format were eliminated. Though the

relationship to the original Transportation Problem is clear, the

emphasis of the Minimum Cost Network Flow problem has clearly

shifted to include route selection.

As in the Transshipment Problem, the Minimum Cost Network Flow

Problem can be structured to determine shortest paths [Bazaraa and

Jarvis, 68]. Unlike the Transshipment Problem, there exist many

m. --
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solution techniques for the Minimum Cost Network Flow Problem. These

techniques -- primal, dual, primal-dual and its related out-of-kilter

algorithms among them -- all reflect the continuing association of

network flow and linear programing theory.

Both the Transshipment Problem and Minimum Cost Network Flow

Problem offer several advantages to an analyst in search of a

shortest path solution technique. There exist a number of proven

algorithms and program codes (68, 80, 81, 82, 83, 89, 90, 91]. The

literature offers the results of detailed testing of program codes

on a wide range of networks [84, 85, 86, 87, 88, 92]. Their linear

programming basis permits the use of parametric and sensitivity analy-

sis [68, 93, 96]. Recently, there has appeared a number of additions

to the literature which illustrate experience in the application of

multiobjective methodology to these problem areas [93, 94, 98, 99,

100, 101].

The basic disadvantage to the entire network flow area lies in

the acknowledged, marked inefficiency of any network flow solution

technique in comparison to a set of algorithmic techniques devised

specifically to solve the shortest path problem. So great is the

disparity, that the routing capability of network flow algorithms

is rarely used to solve the shortest path problem.
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C. GRAPHS, COMIBINATORICS, AND SHORTEST PATHS

The second methodological approach applicable to shortest paths

is based in the fields of Graph Theory and combinatorics. The use

of the term shortest path algorithm usually refers to a technique

associated with this approach. A graph is a representation of an

existing or theoretical physical system. Graph theory is concerned

with graph structure, design, and physical capabilities and limitations.

Shortest paths, shortest spanning trees, and shortest circuits, includ-

ing the Traveling Salesman Problem, are associated with Graph Theory.

Graphs are distinguished from networks only by the absence of inventory

and flow considerations, with Network Flow Theory being primarily

concerned with flow optimization through a given network. This paper

will continue to use "network" to describe the node-arc system. Its

commonly understood meaning is a sufficiently accurate representation

of graphs and networks as used in practical applications of Graph

and Network Flow Theory.

Most shortest path algorithms are combinatorial in nature.

Since networks consist of a finite set of discrete nodes and arcs,

a path or route through a network can be viewed as one particular

combination of node-arc linkages of a finite, discrete, countable

set of possible combinations. Such a set could be found by exhaustive
3

search. The shortest path could be discerned from this set but at
prohibitive cost for any non-trivial network. The algorithms discussed

4
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below serve to conduct an efficient search of node-arc combinations

by confining the search to stages at which only a subset of the set

of nodes and arcs are examined. Implicitly or explicitly, these

algorithms use Bellman's dynamic progranning principle of optimality

[69], in paraphrase: A subpolicy of an optimal policy must itself

be optimal.

History: Tracing the earliest development of shortest path

algorithms is a difficult process. Early work in shortest paths was

confined to heuristic methods which have not survived in practice.

Some influence on shortest paths appears to have been exerted by the

work on shortest spanning trees [see Shimbel, 3] for reasons which

should become clear in discussion below. Later history is confused

due to conflicting references in the literature, probably due to the

geographical and disciplinary dispersion of authors of shortest path

algorithms and the obscurity of the original publications containing

algorithms.

The first algorithmic formulation of the shortest path problem

was apparently offered by Ford in 1956 [2], the same year Orden

published his Transshipment Problem. Unfortunately, it first appeared

in a proprietory document, the subject of which was Network Flow

Theory. Although later published in France in a collection by Berge

[10], it received little recognition and was further obscured by

later, independently derived algorithms.
* (
4
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In the years afterward, many shortest path algorithms were

presented. In 1957, Dantzig [5] presented an algorithm similar in

nature to Ford's, and Mintz [6] offered an analog method. Moore [7]

offered several algorithms in 1957 but his contribution did not

receive wide recognition until publication in 1959. In 1958, Mintz

[11] offered a formal algorithm and Bellman [9] presented several

algorithms tied to his dynamic programing theory. Dijkstra [12]

published a definitive algorithm in 1959 with Whiting and Hillier

[18] publishing a similar algorithm in 1960. In 1962, Floyd [22]

published his definitive algorithm as a one paragraph presentation

in Conmication of the Association for Conputing Machinery. His

recognition was also subject to delay until it was discovered and

republished in 1965 by Murchland [32].

By 1965, it can be said that the basic formulations for the

shortest path solution algorithms had been defined. Work thereafter

has primarily been directed toward marginal algorithmic improvements

and explorations into improvements in implementation. Contributors

to the area of shortest paths included computer scientists, electrical

engineers, dynamic programmers, network flow theorists, integer

programmers, graph theorists, and transportation scientists. It is

a striking note that the bulk of development was derived indepen-

dently, and over a relatively short period, by people from such

diverse disciplines.
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Literature: The body of literature on the shortest path

problem is extensive. Two excellent bibliographies (Pierce [63]

in 1975 and Golden and Magnanti [70] in 1977) form the basis for

a review of the literature. The selected bibliography presented

here attempts to place shortest path development in chronological

perspective and list as many of the articles pertaining to shortest

paths, published after the above mentioned bibliographies, as were

found during the course of this research.

Within the literature, there are many publications which are

especially instructive to researchers and analysts. Many surveys

have been published which detail shortest path algorithms, discuss

theoretical efficiencies, and present the results of comparative

computational studies of algorithms and associated implementation

techniques [17, 20, 43, 44, 56, 60, 64, 72, 73, 78]. The confusion

stemming from such a proliferation of algorithms is mitigated by

the efforts of several articles to categorize the many algorithmic

variations in terms of a small set of basic approaches, simple in

concept [56, 64, 72, 78]. Other articles detail computer implementa-

tion and data processing techniques designed to increase the effi-

ciency of the basic algorithms [15, 31, 36, 47, 48, 52, 55, 57, 58,

67, 71]. The state of the literature is such that an analyst may

select an algorithm and computer coding directly or develop his

own formulation based on his choice of a basic algorithm and his
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programming experience.

D. SHORTEST PATH PROBLEM CATEGORIES AND ALGORITHMS

In examining the shortest path algorithms based on graph

theory and coninatorics, a division into two general categories

can be seen. The shortest path algorithms may be distinguished

according to which of two problem statements they address:

1) Find the shortest path from some start node s to some

end node t in a network (one-to-one).

2) Find the shortest path from every node in a network

to every other node in a network (all-to-all).

This latter problem can be solved readily by the application

of algorithms developed by Bellman (1959) [9], Tabourier (1973) [58],

Floyd (1962) [22] and others [30, 33, 55]. These algorithms known as

matrix algorithms are attractive when shortest paths are desired

between a significant number of s-t node pairs. A principal dis-

advantage of matrix algorithms is the requirement for storage during

program run, a requirement which makes problems of even moderate

size impossible to be processed on a computer. This problem has

been attacked through the development of decomposition procedures

[37, 38, 42] to increase the size of the problem which can be

successfully solved. A survey of these algorithms and computational

experience is available [33]. The survey also compares the efficiency

e...,' o •
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of these algorithms with "one-to-one" shortest path algorithms

repeated sufficiently to derive shortest paths from all nodes to

all other nodes. The seeming inefficiency in this latter approach

is reduced by two elements. First, the all-to-all algorithms are

costlier to run than one-to-one algorithms. When it is actually

desired to find those shortest paths between two proper subsets

of the total set of nodes (corresponding to a physical network

of origins and destinations with the remaining nodes being connecting

or transshipment nodes) and one or the other of the two subsets

is small in comparison with the total number of nodes, the one-to-

one algorithms applied several times will tend to be more efficient

than the all-to-all algorithms. Second, as will be further explained,

one-to-one algorithms solve their problems by actually finding all

shortest paths from a single node a to all other nodes. This means

that, as an upper bound, a so-called "one-to-one" algorithm will

solve the all-to-all problem when run N times for an N-node network.

In the case where the network is too large to allow use of an "all-to-

all" algorithm, use of the "one-to-one" algorithms remain the only

option.

For the DOE project cited earlier, the network of N=447 nodes

would require CPU storage on the order of N2 (200,000) addresses

to obtain a solution with an all-to-all algorithm. To extract

the paths, however, additional storage on the order of N3 (90,000,000)
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addresses is required (Dreyfus [44]). Even with the possibility of

structural decomposition, "all-to-all" algorithms represent an

unattractive option for solving this problem.

The following section discusses the "one-to-one" problem of

shortest paths and the algorithms which most efficiently attack this

problem.

E. SHORTEST PATH LABELING ALGORITHMS

When examining the "one-to-one" shortest path problem, the

firmest conclusion which can be drawn from the literature involves

the choice of algorithmic technique. Although there are several

approaches, including network flow algorithms, analogs [6, 17], and

algebraic techniques [see 72), the class of algorithms known as

labeling algorithms is acknowledged to be the most generally

applicable, versatile, easily coded, and efficient. As such,

labeling algorithms form the basis for the discussion in this section.

As a prerequisite to the discussion of labeling algorithms, a

presentation of some notation and concepts is warranted.

Let eij E an arc beginning at node i and ending at node j,

i j (let no arc exist which starts and ends at the same node).

Note that a direction is implied. If a given network is physically

undirected (two way traffic with costs equal in either direction),

another arc eji must be designated or coding introduced to read the

4i
rL



- 20 -

arc as doubly directed.

A path P from a to t is a series of arcs, P = (es, eij, ... ekl,

eit), such that each arc in the sequence begins at the node that

the previous arc reached. If s = t, the path starts and ends at

the same point, and the path is called a circuit. The path is

sinVZe if each arc and node in the path appears only once. Note

that there is no prohibition against having more than one arc,

going in the same direction, between any pair of nodes. Although

all shortest path algorithms will allow multiple arcs between two

nodes, most physical networks will include one arc for any direction,

that is selected for its shortest distance.

Paths may also be represented by a sequence of nodes v, where

P = v s, v,..., vt) and node vi is the end of the arc which begins

at node vi1 and node vi- l is termed the predecessor of node v.

Numbering of nodes may be accomplished arbitrarily, an exception

being a node nunbering system for acyclic networks (highly directional

networks containing no possible circuits).

The Zength of an arc, l(e), is the arc's contribution to the

attribute in question and may, therefore, be cost, distance, time,

or any other measure of attribute level. The length of a path is

the linear sum of the individual arc lengths of which the path is

comprised. A shortest path is that path, out of the feasible paths

between two given points, which is smallest. By reversing the

WIM'
.... . ". :i " , .. .. . . .
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criteria, a longest path may also be determined. An undirected

arc is symmetric if its length is the same in both directions.

A rooted tree is a directed network consisting of n-1 nodes

and a root node s such that each .of the n-l nodes can be reached by

one 8inpZe path from s. That is, every node v, (except s) is the

end of only one arc (no restriction on the number of arcs beginning

at v); no arc ends at s (no circuit); and, there are no circuits

embedded in any of the paths. A rooted tree is a minimum tree, or

shortest path tree, if for each node v in the network, the unique

path from s to v is also a shortest path from s to v [see 56].

Given a representation of a physical network which is undirected

and symmetrically weighted, such as a highway network, rooted trees

may be constructed by removing (ignoring) arcs which violate the

conditions for a tree (or minimum tree). It may not be possible

to construct such a tree to include all nodes in a highly directed

network, where travel between many pairs of nodes is restricted to

one direction only, but such a concern does not normally apply to

a highway network. If a minimum tree rooted at a can be constructed,

then a shortest path between a and any node t has been found. More-

over, if what is actually desired is the shortest routes from a

single node 8 to many nodes tk9 a procedure which constructs a

rooted minimum tree presents a decided advantage.

The shortest path labeling algorithms developed to solve the

AA .
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problem of finding a shortest path from a node a to a node t in a

network have done so by constructing minimum trees rooted at s,

thereby producing the more general result of finding shortest paths

from s to all other nodes in the network. As discussed earlier, given

a set A consisting of n origins and a set of B of m destinations,

both A and B being subsets of the set of all nodes in the network,

a shortest path labeling algorithm can find the n-m shortest paths

desired in only n computer runs of the algorithm.

As an example, consider the AFR location problem. The network

consisted of 447 nodes, 75 of which were sources and 24 of which

were destination nodes. Since the network was both undirected and

symmetrically weighted, the smaller subset of nodes (24) could be

treated as the set of origin nodes for the purpose of structuring

the data for the algorithm. Thus, there exist 75 shortest paths

from each of 24 origins. These 24 • 75 = 1800 shortest paths which

need to be deternmined could be found with 24 computer runs of a

shortest path labeling algorithm.

Labeling algorithms get their name from the bookkeeping technique

(label) associated with each network node and which is essential

to the algorithms' operations. The node label is simply a nunber

representing the shortest distance from the source to the labeled

node found at a particular stage in an algorithm's calculations.

As an algorithm proceeds, labels are changed and set until it has
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been determined that no label for any node can be changed. At

that point, the algorithms stop and all node labels represent the

shortest path length from source to any other node. It remains

to determine the arcs and nodes forming the path. In order to easily

extract the actual path another number, a node predecessor,may.be

associated with each node label. The node predecessor is the nunber

of the next node in the shortest path closer to the origin thus

designating an arc in the shortest path. Extracting the path is

then a matter of backtracking to the origin and recording the nodes

or arcs in order, by hand or through additional coding.

Labeling algorithms have been described as falling into two

general classes, label-correcting and label-setting [56, 72]. The

distinction is based on when any particular node label can be

declared permanent, that is, recognized as being the actual shortest

path length. In label-correcting algorithms, no node label is

declared permanent until, at the termination of the algorithm, all

are declared permanent. In label-setting algorithms, node labels

are periodically declared permanent as the algorithms proceed.

The algorithms terminate when all node labels have been declared

permanent. Other performance distinctions associated with these

two basic approaches are examined below.

Label-correcting algorithms were initially described by Ford

(1956) [2], Moore (1957) [7), and Bellman (1958) [9]. Excellent
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discussions of the individual algorithms and the label-correcting

algorithm as a class are given by Dreyfus [44], Gilsinn and Witzgall

[56], Hulme and Wisniewski [72], and others [17, 64, 78]. The

approach taken by these algorithms is to establish a tree rooted at

the origin. Arcs of the basic network not currently in the tree are

examined in an attempt to find some which can be inserted in the

tree, in place of arcs already in the tree. The criterion used

is that an exchange of arcs must result in a lower node label

value. This method may be generally described as follows [56, 72].

Let d(i) - the label associated with node i

(1) Initially d(s) = 0 (s - origin)

d(i) a distance from s to i along a path

in the tree

d(i) = - if node i is not connected to s

by any path.

Any tree can be used to establish initial values of the d(i),

i i( s. However, it is sufficient to start with the tree consisting

of node s alone and no arcs.

(2) Search through the list of arcs, not currently in

the tree, for an arc eii, any i ) j, such that the sum of the current

node label at the predecessor node and the arc length is less than

current node label at j (d(l) + l(ei ) d(j)). If such an arc is

found, place it in the tree, remove the arc that had previously been
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attached to node j, and change the node label at j to d(j) = d(i) +

l(eij) and the predecessor to I.

(3) Continue the search procedure until no arcs can be

found to reduce any node label. Stop the algorithm. The tree is

now a minimum tree rooted at s. For each node J, d(j) is the length

of the shortest path from s to J.

The first label-setting algorithm is ascribed to G. Minty by

Pollack and Wiebenson [17]. Others were described by Dantzig [15],

Hu [45], and Whiting and Hillier [18]. The label-setting algorithm

most often cited as being the most efficient was described by Dijkstra

[12]. Label-setting algorithms start from the origin node and

proceed to construct a minimum or shortest route tree step-by-step,

stopping when the tree includes all nodes in the given network. It

may be described as below [56, 72]:

(1) Let d(s) = 0

T shortest path tree, initially consisting of

the origin, s, alone.

(2) Search through the arcs that begin at a node in T but

end at one of the nodes which is not yet in T. Among

those arcs eij, i in T, J not in T, find the one that

minimizes d(i) + l(eij). (As opposed to any arc which

would reduce a node label - as in label-correcting

algorithms.) Place that arc and node in T, set or reset

.. . ... _ . , . . . .
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d(j) = d(i) + l(ei ), and declare it permanent (d(j)

is now the length of the shortest path from s to j).

(3) Repeat (2) until all nodes are in T and permanent.

The logic which permits label-setting algorithms to establish

permanent node labels prior to termination of the algorithm requires

that no arc weights be non-negative. The minimization element of

the process in step (2) allows the node label to be declared permanent.

The reasoning is that a more indirect route to node j would have to

originate from one of the nodes which, from the minimization calcula-

tion, is already larger than the node label set at j. Call this

other candidate node k. d(k) is > (or at best =) d(j) from minimiza-

tion. Therefore, d(k) + l(ekJ) ( (equal if l(ek) = 0), if

l(ek) > 0. Were l(ekJ) allowed to be less than 0, it is apparent

that it is possible that d(k) + l(ekj) < d(j) and that (ek ) should

be included in T, eij removed from T and d(j) changed to equal d(k) +

l(ek ). However, a label-setting algorithm, by declaring d(j) = d(l)

+ (eij) as permanent, would not find the better solution above, and

the tree found by the algorithm would not be a shortest path tree.

In examining the two basic categories of labeling algorithms,

theoretical bounds were calculated as to computational efficiencies

based upon the number of additions and comparisons (e.g., d(l) +

l(elj) as an add, d(1) + l(e j) > d(j) as a compare) required by

each algorithm to construct a shortest path tree. In a comprehensive

review of algorithms, including most of the initial formulations

U
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and modifications known at the time, Dreyfus (1969) [44] calculated

theoretical upper bounds on the number of calculations as follows:

label-correcting algorithms were to have computer run times pro-

portional to N3 where N = number of nodes in the network; label-

setting algorithms were to have run times proportional to N2 . On

that basis, label-setting algorithms should be the preferred approach

to solving shortest path trees, given a network such as a highway

network where all arc weights are positive.

Two factors about the algorithms and the efficiency calculations

resulted in further investigation into relative efficiencies. First,

theoretical calculations were based on upper bounds which meant the

assumption of a complete network: all nodes connected by.an arc

to all other nodes in the network. Physical networks rarely approach

this representation and transportation networks are very sparse. A

second factor involves modifications to the basic algorithms, many

of which are stated in the literature as new algorithmic types.

The modifications have been aimed at two elements within Step (2)

of both label-setting and label-correcting algorithms. In both cases,

the algorithms require in Step (2) a search of arcs. The order in

which arcs are stored and are examined at each iteration in the

search procedures can have an effect on the efficiency of an algorithm.

Computational examinations were conducted on algorithms of both

categories using different "list-processing" modifications to the

basic algorithms and applied to networks of varying degrees of
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arc-density. Other experiments investigated the effect of network

"shape" (e.g., long and thin vs. square or circular) on algorithm

efficiencies. The results of such experiments have been reported

by several authors including Gilsinn and Wlitzgall (1973) [56] and

Hulme and Wisniewski (1978) [72]. A general conclusion reached

from the results of such experiments was that relative differences

in efficiencies between the two classes of algorithms were reduced

or even reversed, given certain list-processing modifications and

networks with specific arc densities. Arc density is the measure of

the completeness of a network. In a complete network every node is

connected to every other node and has, therefore, N(N-l) (about N2 )

arcs where N is the number of nodes in the network. Arc density

is the ratio of the actual number of arcs in the network (n) to the

maximum number of arcs and is normally calculated: n/N2

Hulme and Wisniewski [72] investigated three algorithms, using

associated list-processing modifications and applying them to sparse

networks, with arc densities between 0.5 and 0.001 and a number of

nodes which varied between 25 and 2000. Hulme and Wisniewski chose

two label-correcting algorithms: an algorithm by Ford [2] and

independently described by Moore [7],and Yen [47]. The remaining

algorithm was the label-setting algorithm described by Dijkstra

[12] using a list-processing modification termed the heap sort. Their

choice of algorithms was based on previously reported experiments.

, i ' -lwL " , ,.
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The algorithms themselves are explained in detail and Fortran

codings are offered as appendices. Their results indicate that

Ford's label-correcting algorithm was superior to Yen's and to

Dijkstra's label-setting algorithm in most cases.

Despite the extensive computational experience offered, an

analyst searching for an algorithm for a particular network is still

confronted With uncertainties in these results. Other considerations

which affect performance are age and type of computer hardware,

coding languages, and supplemental coding designed to organize

and display the algorithm's results. In general, computational

experience was gathered on a particular set of hardware, with a

particular language, and with little attention given to procedures

for presenting and displaying results. It is a warning to the

analyst that computational results be taken as a guide to relative

performance during calculations. The run times offered may be

altered by hardware and language and dominated by subsequent data

display coding.

F. SHORTEST PATHS AND MULTIPLE OBJECTIVES

The shortest path problem has not been examined with respect

to its use in multiobjective analysis. This categorical statement

may be argued against, but the literature reveals only cursory

mention of multiobjective analysis and a methodological approach

* -- - .
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which can be considered only marginally effective in multiobjective

analysis.

Christofides in his 1975 book Graph Theory: An ALgorithrmc

Approach [62] is the only reference found in the literature which

talks of multiple objectives. The text outlines several examples

of problems with two attributes. In all cases, however, an implicit

judgement has been made which results in a commensuration of the

attributes. An example is the problem of probabilistic networks.

The outcome of the analysis is the shortest expected distance.

While clearly a traditionally acceptable result, there exists the

possibility of "shorter" but "riskier" paths and, conversely,

"longer" but "more secure" paths. In the absence of any discussion,

one must assume that a commonly accepted commensuration of attributes

has been substituted for multiobjective analysis in the problem of

probabilistic networks and similar problems.

Christofides does mention, but does not illustrate with an

example, the use of a weighted combination of objectives when the

attributes in question are not perceived to be obviously commensurable.

Again, no discussion is forthcoming on choosing the appropriate

weights, nor is there any reference to texts or articles about

multiobjective analysis.

This is not to say that multiobjective analysis does not apply

to shortest path problems. Christofides' discussion illustrates the
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applicability of a preference-oriented multiobjective approach, a

particular methodological approach that obviates the need for

multiobjective shortest path algorithms. However, the mention of

a weighted combination of objectives (the onZy mention in the shortest

path literature) does suggest that the weighting method, one of the

principal generating techniques may have a role to play.

There does exist an approach in the shortest path literature

which offers explicit recognition of the existence of multiple

objectives and their potential effect on the decision "bout which

path would be considered best. This approach has become known as

the Kth Shortest Path Problem. Stated briefly, the problem is to:

find the shortest, 2nd shortest, ... , kt h shortest paths between

two given nodes in a network. Note that the Kth Shortest Path

Problem does not address the question of multiple objectives. The

premise is that, given the existence of an additional quantitative

or qualitative attribute, the decision-maker can pick one among

the k paths identified which possesses an acceptable combination

of distance and whatever other attribute is of concern. That is,

"shortest" is still defined in terms of the conventional distance

or cost objective.

The Kth Shortest Path Problem has a long history. The first

algorithm acknowledged to address the problem was stated by

Hoffman and Pavley in 1959 [13] making it one of the earlier attempts
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to address the question of multiple objectives. Also interesting

is that it occurs early in the development of algorithms for the

Shortest Path Problem as well. Other proposed algorithms quickly

followed including one by Bellman and Kalaba in 1960 [14] and by

Pollack in 1961 [19]. Surveys of Kth shortest path algorithms were

included in articles by Pollack in 1961 [19] and Dreyfus in 1969 [44].

The attractiveness of Kt h shortest path algorithms is severely

diminished by their lack of direct consideration of any but a single

objective to identify paths. As a result, none of these algorithms

can assure that any but the shortest of the k paths identified will

be noninferior with respect to the multiple objectives. Further,

there is no assurance that all noninferior paths can be identified

short of complete enumeration.

As a result, the Kth Shortest Path Problem remains an unsatis-

factory approach to multiobjective analysis. Unfortunately, it

appears to be the only approach to have been widely considered for

multiobjective shortest path problems.

Although not discussed in the literature relating to shortest

paths, it is clear that the weighting method of multiobjective

analysis (see Cohon, 1978 [97]) can be used with shortest path

algorithms to generate noninferior paths.

In the weighting method, a two-objective problem would be

reduced to a single-objective problem in the following manner:

m 41
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ZJ= wZ1 + (- Z2

where Z= objective one, Z2 = objective two, w = weighting
factor permitted to equal a value anywhere in the closed

interval [0,1], and Zw = the weighted combination of the

two original objectives.

At any choice of w, the problem is reduced to a single objective

problemwhich can be run using any available solution technique.

The resulting solution is the best solution given the relative

value of the two objectives with respect to each other, as determined

by the choice of w. The analyst proceeds to systematically vary the

choice of w within the prescribed interval, thereby-generating a

succession of solutions, each of which can be expressed in terms

of its contribution to the two attributes and the weight at which

it can be described as "best". A complete discussion of the weighting

method is available in Chapter 6, reference [97].

The weighting method is confronted with two major difficulties:

one general to any application, the second created by the nature of

networks. In general, any given noninferior solution to a multi-

objective problem will be found by the weighting method for a

single weight value but for a range of weight values (e.g., Solution

A will be found whenever a weight, w, wuch that w, < w < w2 , is used

to form the weighted combination of our two objectives). The size
of the range (w2 - w,) and its limiting elements (wi, w2 ) cannot

2..2......ot
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be known beforehand. The application of the weighting method must

then be accomplished through a systematic, but arbitrary, scheme

of varying the weighting factor w in an attempt to determine non-

inferior solutions. However, several runs of any algorithm using

the weighted combination of objectives may produce the same

solution. Further, should two successive runs with two different

values of w, e.g., wa & Wb, produce two different solutions, there

exists no assurance that no other noninferior solutions exist which

could be found if a weighting factor somewhere in between the two

weights wa and wb were used. For example, at wa = .1 Solution A is

found, at wb = .2 Solution B is found. There exists the possibility

that, should another run using w = .15 or any other weight within

the continuous interval (.1, .2) be accomplished, that some solution,

Solution C, e.g., would be found. This is illustrated in Figure 1l-1.

The analyst is left with the problem of establishing a weight-varying

scheme to derive solutions and then, based on run results and his

level of experience, adjust the scheme to search for other solutions.

The final product is an approximate tradeoff curve with an unknown

degree of accuracy.

The second difficulty lies with the inability of the weighting

method to identify gap solutions. There does exist a multiobjective

technique, the constraint method (see Cohon [97]), which addresses

the problem of gap solutions. However, the constraint method is

• ~~~.,"- . .. ,
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FIGURE II-1

FINDING NONINFERIOR SOLUTIONS

Z2
wa = 0. 1

Aa

0 w =0.15

E

\w a =0.2

zi1

Solution A found when ZW = 0.1 Z1+ (1 -0.1) Z2'

Solution B found when ZW a 0.2 Zi+ (V1- 0.2) Z2.

Solution C found when Zw z 0.15 ZI+ (1 -0.15) Z2.

Solutions D and E remain to be found.
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directed toward linear programming problems and proceeds by altering

the constraint set of such a problem. It is clearly inapplicable

to shortest path labeling algorithms. It may, of course, be used

with network flow algorithms adapted to determine shortest paths

but the cost in time and effort may become extreme. Further, the

selection of constraints is an ad-hoc process, much as the selection

of weights in the weighting method.

Still another method exists, however. The next chapter offers

a labeling algorithm which, quickly and relatively inexpensively,

can generate the entire set of noninferior paths. The algorithm is

unique in the field of multiobjective analysis in that complete

generation of the noninferior set, including gap solutions, can be

guaranteed in one run of the algorithm, without waste attributable

the generation of repeated solutions.

J
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CHAPTER III

THE NONINFERIOR PATH LABELING ALGORITHM

A. INTRODUCTION

The Noninferior Path Labeling Algorithm (NPLA), as its title

suggests, is related in many ways to shortest path labeling algorithms.

The particular class of shortest path labeling algorithms which

bears on the discussion of NPLA is the set of label-correcting

algorithms. In the discussion below, it will be shown that NPLA

uses the structure and procedure of label-correcting algorithms while

modifying the logic by which paths are constructed to enable

determination of noninferior paths.

It was shown in Chapter II that the basic label-correcting

algorithm proceeds through at most (N-1) iterations, where N is

the nuner of nodes in the network. This is true since, at any

iteration k, nodes are reached by paths consisting of k or less

arcs. Because the longest simple path in an N-node network will

contain (N-l) arcs, the algorithm need proceed no further. Another

characteristic of the label-correcting algorithm is that all nodes,

except the origin, will be reached and their node labels examined

and altered as appropriate many times during the course of the

algorithm's run.

These two factors are essential to the operation and convergence

• .. ' .
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of NPLA when based on label-correcting principles. NPLA modifies

the label-correcting algorithm in three principle ways. First, arc

weights consist not of a single number but of a P-tuple containing

a separate number expressing the arc's contribution to each of P

attributes of concern. Second, the node label is changed to be a

label vector in which several labels, and predecessor indicators

if desired, may be accepted, The third and most striking modification

is the change from the minimization logic of the label-correcting

algorithm to the logic of noninferiority. Throughout the operation

of NPLA, attribute levels of the arcs, summations, and labels are

maintained as distinct numbers within a P-tuple where P is the

number of attributes.

A two-objective problem, with attributes A and B, can illustrate

NPLA's operations. Each time a node is reached by a path during a

run of NPLA, the attribute levels of the arc's 2 -tuples must be

correspondingly added (i.e., using vector addition) to the one or

more label 2-tuples of the connecting node. These summed 2-tuples,

each representing a path, must be compared to the one or more label

2-triples of the reached node. The results of the comparison between

any path 2-tuple and the label vector may take any of the following

forms:

1) Both levels of attributes A and B in a path 2-tuple are

better than both of the attribute levels of the labels in

Moil.
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the node vector. Here, dominance is exhibited and any

dominated node label 2-tuples are eliminated from the

node vector. Then the path 2-tuple is placed in the

node vector. This is always the case the first time a

node is reached by a path from the origin.

2) Both path attribute A and B are worse than the corresponding

attribute levels of any label 2-tuple in the node vector.

Here inferiority is exhibited. No change is made to the

node vector and the path is dropped from further considera-

ti on.

3) Path attribute A (or B) is better than the corresponding

attribute level of at least one of the label 2-tuples while

path attribute B (or A) is worse than the corresponding

attribute level of the label 2-tuplt.' 'T"ere, noninferftrtty

is exhibited; the path cannot be considered either better

or worse than at least one of the label 2-tuples. It

should be noted that while a path may be noninferior to

some of the 2-tuples, in the node vector, it may also

dominate one or more of the remaining 2-tuples in which

case actions outlined in paragraph 1), above are taken.

To illustrate the possible type of transaction in paragraph 3),

an example is presented in Table III-1. Here, 2-tuples (8,4) and

(6,6) in the node vector are dominated (we are minimizing both
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TABLE III-1

SAMPLE NODE VECTOR VALUES

Path 2-tuple Node Vector

(4,10)

(5,2) (6,6)

(8,4)
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objectives) by the path 2-tuple and must be removed. Path attribute

A(5) is worse than the corresponding attribute level in the remaining

node vector label 2-tuples (4,10). But, path attribute B(2) is

better than the corresponding label attribute level. Noninferiority

is exhibited and the path 2-tuple is included in the node vector.

At the conclusion of the comparison process the node label vector

would read as follows: Label vector [(4,10), (5,2)].

B. ALGORITHM STATEMENT

The algorithm may now be stated, with appropriate changes in

notation and assuming a two-objective problem as an introduction.

Let, d(i) - the node label vector associated with node i,

the vector consisting of an initially undeter-

mined number of label 2-tuples such that

d(i) = a!, bi ) ,  , .. ,

k(eij) = (a i, b ij), a 2-tuple expressing the arc's

'length" in terms of the two attributes

1) Initially, d(s) = (0,0)

d(i) = (0,0) i 1 s

2) Search through the list of arcs for an arc eij such that:

at least one of the sums of arc length and the current

node labels at node i is dominant or noninferior with

respect to the labels in the vector at node j. Label

L+
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vectors and arc lengths are summed as follows:

-((a! , b!), (a , b2),..., (J, b r)) + (aij, bij)

((al + a) (b1 + b ((a? + a3 (b?+ b

((ar , aij), (br + bij))

3) Continue the search procedure until no arcs can be found

which will alter any node label or after (N-l) iterations.

For each node j, d(j) contains the labels representing

the two-dimensional lengths of all noninferior paths from

s to j.

Several comments about the algorithm statement above are in

order. There are several modifications to label-correcting shortest

path algorithms, designed to increase efficiency, which can also

be applied to NPLA. Discussion of some of these modifications is in

Gilsinn and Witzgall [56] and Hulme and Wisniei.ski [72]. One of

these modifications is the sequence list. Its basic concept is

that, at any iteration, the numbter of calculations in step 2) can

be reduced by the fact that once i(eij ) has been used to check the

node vector at J, eii need not be reexamined until a change occurs

in the node vector at i. The sequence list and other modifications

of this nature effect only the manner in which data is processed

during the algorithm run. As such, modifications to shortest path

algorithms can also be utilized with NPLA.
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Another comment involves the concept of trees which was

important in the discussion of shortest path labeling algorithms.

NPLA does not construct a tree, except for the initial conditions

and by accident in later iterations. Instead, what occurs is the

simultaneous construction of a number of trees, of which one is a

minimum tree. The use of the node vector preserves information

about the network which would enable other trees to be constructed.

The number of trees and how to construct them in a logical progression

is believed to be more of a theoretical than practical question.

Bellman's principle of optimality no longer holds with NPLA.

No longer are decisions at stages (iterations) being made according

to the principle of optimality. However, the necessary substitution

for the governing decision principle, necessary to ob.tain noninferior

paths, can be stated in similar terms. It may be asserted that: a

subpolicy of a noninferior policy must itself be noninferior. Thus,

at no succeeding iteration can NPLA construct or build upon any but

noninferior paths.

The final comment concerns NPLA's effectiveness. NIPLA works

by constructing, saving, and building upon noninferior paths during

step 2) of the algorithm. Conversely, it will not construct, save,

or build upon any inferior pathway. Further, the method of path

construction does not consider the convexity or lack of convexity

of the problem or its solution set, dealing only with node-arc

4 .,
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combinations. As a result, there exists no special obstacle to the

discovery of gap solutions. Since they, too, can be noninferior,

NPLA will find all noninferior solutions, including gap solutions

as they exist.

There is no theoretical obstacle to using the NPLA on a problem

of more than two objectives. However, there exist practical

obstacles common to all techniques of multiobjective analysis. As

the number of objectives increases, the number of comparison calcula-

tions in step 2) required to determine noninferiority increases.

The number of noninferior paths discovered is likely to increase,

requiring additional storage associated with the node vectors.

The burden of display and subsequent use of results also increases

with the number of objectives. In large problems or ones with a large

number of objectives, the cost of implementing NPLA may be prohibitive.

In such cases an estimating, e.g. weighting, approach may be more

desi rable.

While NPLA appears to be unique, there are elements of the

algorithm for which the literature offers experience. The use of

arc lengths of more than one attribute is well established. A

comprehensive discussion of several problems employing this practice is

in Christofides [62]. The use of what this paper calls node vectors,

although derived independently, was later found to have been used

in connection with D. Shier's approach to the Kth Shortest Path
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Problem [79].

The alternatives to NPLA for a multiobjective approach to path-

finding have been found to be rare in the literature. Christofides

[62] simply mentions the use of weighted combinations of objectives.

The Kth Shortest Path Problem appears to be the most touted; although

faulted, approach among those associated with graph theory. Several

examples of the use of multiobjective methodology in the analysis

of network flow problems were found in the literature [93, 94, 98,

99, 100, 101]. The multiobjective techniques used in these examples

are explained in the detailed examination of multiobjective methodology

given in Cohon's 1978 book [97].

The result of literature search indicates that the Noninferior

Path Labeling Algorithm is itself unique in its approach to the

multiobjective path determination and represents a contribution to

the field. Its practical effectiveness will be based on comparative

efficiency with other multiobjective approaches. Preliminary investi-

gations on sample networks have indicated that, with respect to sparse

networks at least, the noninferior path algorithm is more efficient

than the weighting method applied to shortest path labeling algorithms,

even under best case assumptions applied to these latter methods.

Firm conclusions await detailed research under a wide range of

network conditions. But, sufficient confidence exists in its

validity and general efficiency to have been used to develop the
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path data for use in the DOE project.

C. NPLA SAMPLE PROBLEM

Figure III-I gives a sample network which will be used to

illustrate the NPLA procedure.

Problem: Find all noninferior paths from a to t

Initially, d(s)= (0,0)

d(i) s (o)

At iteration 1), node vectors at 1 and 2 are the only ones which

are subject to change.

d(s) + Z(esl) = (0,0) + (2,4) = (2,4)

d(s) + X(es 2) = (0,0) + (5,2) = (5,2)

d(i) + Z(ei  ) = (-,-) for all ij I s,l,2

Comparison of the above 2-tuples with the current node vectors at

nodes 1 and 2 illustrates an obvious case of dominance and node

vectors 1 and 2 are changed. At the conclusion of the first iteration,

node vectors are as follows:

d(s) = (0,0)

d(l) = (2,4)

d(2) = (5,2)

d(i) = (0,0) for i g s,l,2
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Succeeding iterations proceed in a similar manner. Table 111-2

illustrates the node vectors after each iteration of rIPLA.

The algorithm terminates after the fifth iteration when no arc

can be found which results in a change to any node vector. Four

noninferior paths from s to t have been identified and their "lengths"

recorded as labels in the node vector of node t. Note that, in a

manner analogous to shortest path algorithms, all noninferior paths

between s and all other nodes have also been identified. Paths

may be retrieved, again as in shortest path algorithms, by maintaining

node predecessor indicators with each label 2-tuple in the node

vector. Such use is not required. The paths may be retrieved by

finding the arc which, when its "length" is subtracted from a node

label, results in the "value" of a node label at the predecessor

node. For example, label (7,20) at node t is reduced by subtracting

the length of arc e6t, (2,6), to arrive at a value of (5,14). Since

this corresponds to an actual label within the node vector of node 6,

arc e6t forms one link in a noninferior path from s to t. Similarly,

one can trace the path back to the origin link by link from node 6.

The choice of method when running NPLA on a computer is left to

the programmer.

The noninferior paths, as represented by the label 2-tuples

in the node vector of node t are:
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s 1 4 6 + t (7,20)

s 1 + 3 6 + t (8,17)

s + 2 4 6 t (10,15)

s 2 4 7 t (18,10)

These results may be checked by hand through construction of a

decision tree. The complete enumeration of all paths from s to t in

the sample network is made relatively easy given that only arc simple

paths need be considered.

The tree for the example problem is given in Figure 111-2.

Twelve paths are identified by the decision tree. Ordering the

path values by the first attribute level:

(7,20)

(8,17)

(10,15)

(I 3,24)

(15,15) dominated by (10,15)

(17,24)

(18,10)

(18,13)

(20,20)

(22,29) dominated by (18,10)

(26,20)

(29,29)

S.m
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The check for noninferiority is now a simple process of checking

the values of the second attribute level. The list then reduces

to [(7,20), (8,17), (10,15), (18,10)] which is identical, happily,

to the node label vector of node t at the conclusion of NPLA. Note

that only four of the twelve feasible paths are noninferior. Were

a K Shortest Path algorithm to have been used to attempt to find

these paths, it would have been required to set k > 7. Also, one

would not be certain that all paths had been identified without the

NPLA results or this exhaustive check.

The following chapter discusses the efficiency and effectiveness

of NPLA. The results of NPLA's testing from the two-objective problem

in the DOE project are used to provide concrete measures of these

areas.

I m trI
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CHAPTER IV

NPLA APPLICATION RESULTS

A. COMPARATIVE PERFORMANCE

NPLA was used in the DOE project to generate sets of nonin-

ferior paths from potential AFR sites to commercial nuclear power

plants in the eastern half of the continental United States. The

network which formed the basis for the NPLA problem was a represen-

tation of the U.S. Interstate Highway System in the eastern half

of the country. Some non-interstate routes were used, principally

as connecting links between AFR or reactor sites and an interstate

route. The set of nodes consisted of 75 reactor sites, 24 AFR

sites, and 348 intersections on the highway system. Two attributes

were Used: measured road distance and population within a zone

bordering along each side of the road. The objectives expressing

these attributes were to be minimized.

The goal of the research team was to develop solutions to the

AFR siting problem under varying assumptions about which reactors

would require storage space for spent fuel and which AFR sites would

be eligible to receive that fuel for storage. In all cases, the non-

inferior set was to be estimated. In some of the problems, it was

desired to obtain the complete noninferior solution set. This lat-

ter desire demanded that the path determination problem, being

embedded within the siting problem, also be solved to obtain the

complete noninferior set of paths. Given that the noninferior set
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of paths remains unaffected by the scope of the siting problem and

the ease with which NPLA produced the noninferior path set, it was

decided that NPLA be used to generate the complete noninferior set

of paths from each of the 24 potential AFR sites to all reactors.

This decision had the added benefit of producing consistency in the

path sets and providing flexibility in the process of estimating

the noninferior solution set of the siting problem.

NPLA was developed after a lengthy search for an appropriate

path finding methodology. Prior to its development, three single

objective algorithms were chosen for examination as bases for use

with the weighting method of multiobjective analysis. One was the

Out-of-Kilter Algorithm [68, 81] for which the network was formu-

lated as a Minimum Cost Network Flow problem.

An excellent discussion of the Out-of-Kilter Algorithm is pre-

sented in Bazaara and Jarvis [68] and computational experience and

comparison with other Minimum Cost Network Flow approaches is pre-

sented in Glover, et al., [87], among others [85, 91, 92]. As

previously stated, labeling algorithms are far more efficient for

finding shortest paths in uncapacitated networks. However, the Out-

of-Kilter Algorithm was chosen as representative of the faster net-

work flow algorithms.

The next two algorithms were shortest path labeling algorithms.

The first was a modified label-correcting algorithm developed by

project analyst Roger Cox. The last algorithm examined was
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Dijkstra's label-setting shortest path algorithm [12] using a

"heap sort" data list processing modification [56,72].

The resulting mix of algorithms presented a representative

sample of the spectrum of available algorithms. Together they pro-

vided a check on consistency of results and added evidence of NPLA

validity. They also provided a basis for the initial investigation

into NPLA efficiency compared with alternate methods.

Table IV-l presents the computational requirements for each of

the four algorithms. Except for NPLA, the algorithms were run as

single objective minimization problems using a weighted combination

of the population and distance objectives. Each was run 9 times, 3

times from each of 3 AFR nodes as the origin. Times are averages

for the 9 runs.

The results of the Out-of-Kilter Algoritm (OKA) show the time

to achieve the solution to the basic problem. The results for the

remaining algorithms include time to reconstruct and organize path

data. Although this is contrary to the manner in which comparative

analysis has been conducted in the literature, it offers an illus-

tration of the computational times which an analyst ultimately faces

in the practical use of a path-finding algorithm. Further, NPLA

results include the time necessary to reconstruct those paths which

represent solutions that lie on the convex hull of the solution set,

but do not include time to reconstruct paths corresponding to gap

solutions. While NPLA obtained these gap paths as part of its basic

...... . . _ _ . _ . - _ . ...... ...
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I

! TABLE IV-I

I PATH GENERATION TIMIES (SEC.)

1 Dij kstra Cox Noni nfe rio r
SOut -o f-Kil1ter Label-Setting Label-Correcting Path Labeling

Algorithm (OKA) Algorithm (DIJK) Algorithm (LC) Algorithm (NIPLA)

6.25 2.98 3.86 12.83

- All algorithms applied to 447 node network with 3 origins and 15
desti nations.

- All runs accomplished during same time period on The Johns Hopkins
University DEC 10 computer.
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solution, omitting them from the reconstruction process served to

place the results on a more even footing with those of the other

algorithms which, as detailed earlier, are unable to find gap solu-

tions.

The timing results illustrate that NPLA is on the order of 3.5

to 4.5 times slower than either of the single objective labeling

algorithms. NPLA is seen to be on the order of 2 times slower than

OKA. However, this difference effectively disappears given the sub-

sequent effort needed to extract path data from OKA results.

Since NPLA produces the complete noninferior set in one run,

the other algorithms must be further analyzed to provide a compari-

son based on equal production results. As a start, the results of

NPLA can be examined. Table IV-2 illustrates the number of paths

identified in 3 runs of NPLA using the 3 different AFR sites as the

origin. Paths for each run were extracted from the origin to only

15 out of the 75, reactor sites. Again, only paths corresponding to

solutions lying on the convex hull of the solution set were extract-

ed. As a result, a postexioz assignment of weight intervals was

possible. Each such weight interval corresponded to a path set,

consisting of a path from the origin to each of the 15 destinations.

Each such path set differed by at least one path from the path set

associated with an adjacent weight interval. Each path set could be

found by all of the other algorithms providing that a weight some-

where in each of the corresponding weight intervals were chosen to
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TABLE IV-2

NPLA PATH GENERATION

No. of
No. of Weight Intervals

Origin Destinations (Distinct Path Sets)

A 15 22

B 15 29

C 15 24

TABLE IV-3

ESTIMATED EQUIVALENT PERFORMANCE TIMES (Sec.)

Origin NPLA DIJK LC

A 8.94 70.11 85.65

B 13.49 84.97 119.38

C 16.07 67.17 85.52

Average 12.83 74.17 96.85

'g ' i*-
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form the weighted combinations of objectives. Given n weight inter-

vals identified by NPLA, each of the other algorithms could produce

the same results if run n times with the proper weights chosen.

Table IV-3 compares NPLA run times with equivalent performance run

times for each of the other two labeling algorithms. OKA was elimi-

nated from consideration based on previous results.

Under these "best case" calculations, NPLA is seen to be on

the order of 4.2 to 9.6 times faster than the two labeling algorithms.

However, this must be considered a lower bound on NPLA efficiency.

Given the lack of prior knowledge of the number of path sets and

their corresponding weight intervals, it would be extremely unusual

for an analyst applying the weighting method to the single objective

algorithms to arrive at a complete, exact weighting scheme to find

the total solution set. It is most likely, as discussed earlier,

that an initial weighting scheme followed by supplemental adjusted

weighting schemes would be required, leading to a larger number of

runs and a greater accumulated rtn time. Even then, the analyst

would not be sure that all path sets had been identified without

NPLA results as a check. Even then gap solutions still would remain

undiscovered.

B. NPLA AND GAP SOLUTIONS

The issue of gap solutions is currently a subject of much

interest in the literature. There have been several approaches
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directed toward finding gap solutions [102, 103, 104] including

the Constraint Method [See Cohon, 97]. Here, NPLA offers to in-

crease the understanding of the nature and frequency of occurrence

of gap solutions. Table IV-4 supplements the results from Table

IV-2 with information about the number of distinct paths found

which correspond to gap solutions and the solutions lying on the

convex hull.

The number of gap solutions found was not trivial, a result

which was surprising to the project team. It indicates that the

solution sets of multiobjective discrete problems may be more com-

plex than generally realized.

The results of this analysis conducted during the DOE project

were deemed sufficient to justify use of NPLA for the solution of

the path determination problem. Its use in similar problems appears

also to be justified. The need and opportunity for further research

on NPLA effectiveness and efficiency has been identified. The ac-

ceptance of NPLA methodology, while it appears certain, awaits the

fulfillment of such research.
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TABLE IV-4

ALL NONINFERIOR PATH GENERATION DATA

Convex Total
Origin Path Sets Paths Gap Paths Paths

A 22 39 27 66

B 29 79 166 245

C 24 54 39 93

%II
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V. CONCLUSIONS

I The Noninferior Path Labeling Algorithm has been presented as

a new and effective approach to the multiobjective path-determina-

tion problem. In Chapter I, it was established that the problem

which NPLA addresses is of growing importance to public and private

planners. In Chapter II, NPLA was placed in historical context.

Its shortest path labeling algorithm predecessors were examined and

explained. Chapter II also examined the previous and alternative

means of approaching the multiobjective path-determination problem

and established NPLA as unique in its approach.

Chapter III formally presented NPLA and offered proof by anal-

ogy with its underlying approach - the shortest path label-correct-

ing algorithm. An illustration of its functioning with a two-

objective example was given. Finally, Chapter IV presented the

initial evidence of the superiority of NPLA over alternative multi-

objective techniques.

It is clear that NPLA promises to be a major contribution to

the field of path-determination. It is also clear that further

research on NPLA is both warranted and necessary. The following

areas outline the general areas where future research should be

rewarding.

A formal proof of NPLA efficacy is lacking. Its functional

similarities to the shortest path label-correcting algorithm appear

to promise that its proof would be equally similar, but this requires

, -m
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verification. Along with a formal proof, theoretical bounds on

computational efficiency should be investigated.

NPLA has been used only in conjunction with a single, sparse,

positively weighted network. Its practical efficiency needs to be

investigated with networks of varying size and arc density. Its use

on networks with positive and negative arcs needs to be tested.

Here again, its functional similarity to label-correcting algorithms

promises that NPLA should work with such networks but this awaits

verification. Comparative efficiency investigation needs to be more

thoroughly and rigorously applied.

The practical efficiency of NPLA as used in the DOE project and

reported in Chapter IV can most likely be improved. Improvements

due to coding and the application of various list-processing modifi-

cations may lead to more efficient versions of NPLA, as they have

done for shortest path algorithms.

NPLA, by the ease with which it identifies gap solutions,

promises to add to the knowledge of the "duality gaps" exhibited in

multiobjective path-determination problems and in many other discrete

multiobjective problems. The number of gap solutions found by NPLA,

as illustrated in Chapter IV, suggests to the author that a reevalua-

tion of their significance is warranted.

Of final mention, all areas discussed above need to be evaluated

for application of NPLA to problems of three or more objectives.

Although the subject of limits to the use of NPLA in terms of computer
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capacity may arise in the two objective case, it is under the condi-

tion of several objectives that NPLA is most likely to reach a

practical limit on its effectiveness. What those limits are and

where they arise need to be investigated.

Research on NPLA has just begun. The opportunity for further

research is bountiful. While such research must follow, it can be

said that NPLA has already been shown to be an effective and effi-

cient approach to practical problems of multiobjective path-

determination.
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